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Generalized Baire spaces

Let κ be an uncountable cardinal such that κ<κ = κ.

The κ-Baire space κκ is the set of functions f : κ→ κ, with the
bounded topology: basic open sets are of the form

Ns = {f ∈ κκ : s ⊂ f}, where s ∈ <κκ.

The κ-Cantor space κ2 is defined similarly.

κ-Borel sets: close the family of open subsets under intersections
and unions of size ≤ κ and complementation.

κ-analytic (or Σ1
1(κ)) sets: continuous images of κ-Borel sets;

equivalently: continuous images of closed sets.
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The open graph dichotomy for subsets of κκ

Let κ be an infinite cardinal such that κ<κ = κ. Let X ⊆ κκ.

OGAκ(X):
If G is an open graph on X, then either

I G has a κ-coloring, or
I G includes a complete subgraph of size κ+.

OGDκ(X) (also denoted by OGA∗κ(X)):
If G is an open graph on X, then either

I G has a κ-coloring, or
I G includes a κ-perfect complete subgraph,

i.e., there is a continuous embedding f : κ2→ X such that
(f(x), f(y)) ∈ G for all distinct x, y ∈ κ2.
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OGDω(X) for definable subsets X of ωω

Theorem (Feng (1993); Todorčević)
OGDω(X) holds for all Σ1

1 subsets X ⊆ ωω.

Theorem (Feng (1993))
In Col(ω,<λ)-generic extensions, where λ is inaccessible,
OGDω(X) holds for all X ⊆ ωω definable from a countable
sequence of ordinals.
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A higher dimensional version

Suppose κ<κ = κ ≥ ω. Let X ⊆ κκ and let 2 ≤ D ≤ κ. A D-dimensional

dihypergraph is a set H ⊆ DX of non-constant sequences.

OGDD
κ (X)

If H is a D-dimensional box-open dihypergraph on X then either
I H has a κ-coloring, or
I there exists a continuous map f : κD → X which is

a homomorphism from HD to H (i.e. fD(HD) ⊆ H),
where

HD = {x ∈ D(κD) : (∃t ∈ <κD)(∀α < D) t_〈α〉 ⊂ xα}.

OGD2
κ(X) is equivalent to the open graph dichotomy OGDκ(X).
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Applications of OGDω
ω(X)

OGDωω(X) was introduced by R. Carroy, B.D. Miller and D.T. Soukup.

Theorem (R. Carroy, B.D. Miller, D.T. Soukup (2018))
OGDω

ω(X) holds for all Σ1
1 subsets X of ωω.

They also obtain several dichotomies for the second level of the Borel
hierarchy as special cases of OGDω

ω(X). For example:

Theorem (R. Carroy, B.D. Miller, D.T. Soukup (2018))
Let X ⊆ ωω. If OGDω

ω(X) holds, then X satisfies the Hurewicz
dichotomy (i.e., either X is contained in a Kσ subset of ωω or
there is a closed set Y ⊆ X homeomorphic to ωω).
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Questions

I Which applications follow already from the restricted version
of OGDω

ω(X) in the previous theorem?

I Which applications of OGDD
ω (X) can be generalized to the

setting of κ-Baire spaces for κ > ω?

I Let OGAκ say: OGAκ(X) holds for all X ⊆ κκ
(i.e. if X ⊆ κκ and G is an open graph on X, then either G has a
κ-coloring or G includes a complete subgraph of size κ+).

Is OGAκ consistent? If so, how does it influence the structure
of the κ-Baire space?
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Thank you!


