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The x-Baire space "k is the set of functions f : kK — k, with the
bounded topology: basic open sets are of the form

Ny={f€e"k:sC f}, where s € <.

The r-Cantor space %2 is defined similarly.

r-Borel sets: close the family of open subsets under intersections
and unions of size < k and complementation.

r-analytic (or 3} (x)) sets: continuous images of k-Borel sets;
equivalently: continuous images of closed sets.
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The open graph dichotomy for subsets of "k

Let x be an infinite cardinal such that k<% = k. Let X C "k.

OGA,(X):
If G is an open graph on X, then either
» ( has a k-coloring, or

» G includes a complete subgraph of size k™.

OGD,(X) (also denoted by OGA”(X)):
If G is an open graph on X, then either
» ( has a k-coloring, or
» ( includes a k-perfect complete subgraph,

i.e., there is a continuous embedding f : ®2 — X such that
(f(x), f(y)) € G for all distinct z,y € “2.
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Theorem (Schlicht, Sz. (2018))

In Col(k, <\)-generic extensions, where X\ > k is inaccessible,
OGD.(X) holds for all subsets X C "k definable from an element
of *Ord.

These results give the exact consistency strength of these statements.
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A higher dimensional version

Suppose k<f =k > w. Let X C *k and let 2 < D < k. A D-dimensional
dihypergraph is a set H C P X of non-constant sequences.
OGD?(X)
If H is a D-dimensional box-open dihypergraph on X then either
» H has a k-coloring, or
> there exists a continuous map f : *D — X which is
a homomorphism from Hp to H (i.e. fP(Hp) C H),
where
Hp ={z € P(*D) : (3t € <*D)(Va < D)t () C x4}

OGD?(X) is equivalent to the open graph dichotomy OGD,(X).
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Applications of OGDY/(X)

OGDg(X) was introduced by R. Carroy, B.D. Miller and D.T. Soukup.

Theorem (R. Carroy, B.D. Miller, D.T. Soukup (2018))
OGDY(X) holds for all £1 subsets X of “w.

They also obtain several dichotomies for the second level of the Borel
hierarchy as special cases of OGD{(X). For example:

Theorem (R. Carroy, B.D. Miller, D.T. Soukup (2018))

Let X C“w. If OGDY(X) holds, then X satisfies the Hurewicz
dichotomy (i.e., either X is contained in a K, subset of “w or
there is a closed set Y C X homeomorphic to “w).
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Questions

» Which applications follow already from the restricted version
of OGDY(X) in the previous theorem?

» Which applications of OGDZ (X) can be generalized to the
setting of k-Baire spaces for k > w?

» Let OGA, say: OGA,(X) holds for all X C *x
(i.e. if X C*k and G is an open graph on X, then either G has a
k-coloring or G includes a complete subgraph of size x™).

Is OGA, consistent? If so, how does it influence the structure
of the k-Baire space?
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