The Open Dihypergraph Dichotomy for Definable Subsets of Generalized Baire Spaces

Dorottya Sziráki

(in joint work with Philipp Schlicht)

Hejnice, January 31, 2019

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The κ -Baire space $\kappa \kappa$ is the set of functions $f : \kappa \to \kappa$, with the bounded topology: basic open sets are of the form

$$N_s = \{ f \in {}^{\kappa}\kappa : s \subset f \}, \qquad \text{where } s \in {}^{<\kappa}\kappa.$$

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The κ -Baire space $\kappa \kappa$ is the set of functions $f : \kappa \to \kappa$, with the bounded topology: basic open sets are of the form

$$N_s = \{ f \in {}^{\kappa}\kappa : s \subset f \}, \quad \text{where } s \in {}^{<\kappa}\kappa.$$

The κ -Cantor space $\kappa 2$ is defined similarly.

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The κ -Baire space $\kappa \kappa$ is the set of functions $f : \kappa \to \kappa$, with the bounded topology: basic open sets are of the form

$$N_s = \{ f \in {}^{\kappa}\kappa : s \subset f \}, \quad \text{where } s \in {}^{<\kappa}\kappa.$$

The κ -Cantor space $\kappa 2$ is defined similarly.

 κ -Borel sets: close the family of open subsets under intersections and unions of size $\leq \kappa$ and complementation.

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The κ -Baire space $\kappa \kappa$ is the set of functions $f : \kappa \to \kappa$, with the bounded topology: basic open sets are of the form

$$N_s = \{ f \in {}^{\kappa}\kappa : s \subset f \}, \quad \text{where } s \in {}^{<\kappa}\kappa.$$

The κ -Cantor space $\kappa 2$ is defined similarly.

 κ -Borel sets: close the family of open subsets under intersections and unions of size $\leq \kappa$ and complementation.

 κ -analytic (or $\Sigma_1^1(\kappa)$) sets: continuous images of κ -Borel sets; equivalently: continuous images of closed sets.

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Let $X \subseteq {}^{\kappa}\kappa$.

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Let $X \subseteq {}^{\kappa}\kappa$.

$OGA_{\kappa}(X)$:

If G is an open graph on X, then either

- G has a κ -coloring, or
- G includes a complete subgraph of size κ^+ .

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Let $X \subseteq {}^{\kappa}\kappa$.

$OGA_{\kappa}(X)$:

If G is an open graph on X, then either

- G has a κ-coloring, or
- G includes a complete subgraph of size κ^+ .

$OGD_{\kappa}(X)$ (also denoted by $OGA_{\kappa}^{*}(X)$):

If ${\cal G}$ is an open graph on X, then either

- G has a κ-coloring, or
- G includes a κ -perfect complete subgraph,

Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Let $X \subseteq {}^{\kappa}\kappa$.

$OGA_{\kappa}(X)$:

If G is an open graph on X, then either

- G has a κ -coloring, or
- G includes a complete subgraph of size κ^+ .

$OGD_{\kappa}(X)$ (also denoted by $OGA_{\kappa}^{*}(X)$):

If G is an open graph on X, then either

- G has a κ-coloring, or
- G includes a κ -perfect complete subgraph,

i.e., there is a continuous embedding $f: {}^{\kappa}2 \to X$ such that $(f(x), f(y)) \in G$ for all distinct $x, y \in {}^{\kappa}2$.

$\mathrm{OGD}_{\omega}(X)$ for definable subsets X of ${}^{\omega}\omega$

Theorem (Feng (1993); Todorčević) $OGD_{\omega}(X)$ holds for all Σ_1^1 subsets $X \subseteq {}^{\omega}\omega$.

$\mathrm{OGD}_{\omega}(X)$ for definable subsets X of ${}^{\omega}\omega$

```
Theorem (Feng (1993); Todorčević)
OGD<sub>\omega</sub>(X) holds for all \Sigma_1^1 subsets X \subseteq {}^{\omega}\omega.
```

Theorem (Feng (1993))

In $\operatorname{Col}(\omega, <\lambda)$ -generic extensions, where λ is inaccessible, $\operatorname{OGD}_{\omega}(X)$ holds for all $X \subseteq {}^{\omega}\omega$ definable from a countable sequence of ordinals. $OGD_{\kappa}(X)$ for definable subsets X of ${}^{\kappa}\kappa$

Theorem (Sz. (2017))

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, $\operatorname{OGD}_{\kappa}(X)$ holds for all $\Sigma_1^1(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$.

$\mathrm{OGD}_{\kappa}(X)$ for definable subsets X of ${}^{\kappa}\kappa$

Theorem (Sz. (2017))

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, $\operatorname{OGD}_{\kappa}(X)$ holds for all $\Sigma_1^1(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$.

Theorem (Schlicht, Sz. (2018))

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, $\operatorname{OGD}_{\kappa}(X)$ holds for all subsets $X \subseteq {}^{\kappa}\kappa$ definable from an element of ${}^{\kappa}\operatorname{Ord}$.

$\mathrm{OGD}_{\kappa}(X)$ for definable subsets X of ${}^{\kappa}\kappa$

Theorem (Sz. (2017))

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, $\operatorname{OGD}_{\kappa}(X)$ holds for all $\Sigma_1^1(\kappa)$ subsets $X \subseteq {}^{\kappa}\kappa$.

Theorem (Schlicht, Sz. (2018))

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, $\operatorname{OGD}_{\kappa}(X)$ holds for all subsets $X \subseteq {}^{\kappa}\kappa$ definable from an element of ${}^{\kappa}\operatorname{Ord}$.

These results give the exact consistency strength of these statements.

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 \le D \le \kappa$. A *D*-dimensional dihypergraph is a set $H \subseteq {}^{D}X$ of non-constant sequences.

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 \le D \le \kappa$. A *D*-dimensional dihypergraph is a set $H \subseteq {}^{D}X$ of non-constant sequences.

 $\mathrm{OGD}^D_\kappa(X)$

If H is a $D\operatorname{-dimensional}$ box-open dihypergraph on X then either

• H has a κ -coloring, or

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 \le D \le \kappa$. A *D*-dimensional dihypergraph is a set $H \subseteq {}^{D}X$ of non-constant sequences.

 $OGD^D_{\kappa}(X)$

If H is a $D\operatorname{-dimensional}$ box-open dihypergraph on X then either

- H has a κ-coloring, or
- ▶ there exists a continuous map $f : {}^{\kappa}D \to X$ which is a homomorphism from \mathbb{H}_D to H

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 \le D \le \kappa$. A *D*-dimensional dihypergraph is a set $H \subseteq {}^{D}X$ of non-constant sequences.

$OGD^D_{\kappa}(X)$

If H is a $D\operatorname{-dimensional}$ box-open dihypergraph on X then either

- H has a κ-coloring, or
- there exists a continuous map f: ^κD → X which is a homomorphism from 𝔄_D to H (i.e. f^D(𝔄_D) ⊆ H),

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 \le D \le \kappa$. A *D*-dimensional dihypergraph is a set $H \subseteq {}^{D}X$ of non-constant sequences.

 $OGD^D_{\kappa}(X)$

If H is a $D\operatorname{-dimensional}$ box-open dihypergraph on X then either

- H has a κ-coloring, or
- there exists a continuous map f: ^κD → X which is a homomorphism from ℍ_D to H (i.e. f^D(ℍ_D) ⊆ H), where

$$\mathbb{H}_D = \{ \overline{x} \in {}^D({}^{\kappa}D) : (\exists t \in {}^{<\kappa}D)(\forall \alpha < D) t \cap \langle \alpha \rangle \subset x_{\alpha} \}.$$

Suppose $\kappa^{<\kappa} = \kappa \ge \omega$. Let $X \subseteq {}^{\kappa}\kappa$ and let $2 \le D \le \kappa$. A *D*-dimensional dihypergraph is a set $H \subseteq {}^{D}X$ of non-constant sequences.

 $OGD^D_{\kappa}(X)$

If H is a $D\operatorname{-dimensional}$ box-open dihypergraph on X then either

- H has a κ-coloring, or
- there exists a continuous map f: ^κD → X which is a homomorphism from ℍ_D to H (i.e. f^D(ℍ_D) ⊆ H), where

$$\mathbb{H}_D = \{ \overline{x} \in {}^D({}^{\kappa}D) : (\exists t \in {}^{<\kappa}D)(\forall \alpha < D) t \cap \langle \alpha \rangle \subset x_{\alpha} \}.$$

 $OGD^2_{\kappa}(X)$ is equivalent to the open graph dichotomy $OGD_{\kappa}(X)$.

Applications of $OGD_{\omega}^{\omega}(X)$

 $OGD_{\omega}^{\omega}(X)$ was introduced by R. Carroy, B.D. Miller and D.T. Soukup.

Theorem (R. Carroy, B.D. Miller, D.T. Soukup (2018)) OGD $_{\omega}^{\omega}(X)$ holds for all Σ_{1}^{1} subsets X of $^{\omega}\omega$.

Applications of $OGD_{\omega}^{\omega}(X)$

 $\mathrm{OGD}^\omega_\omega(X)$ was introduced by R. Carroy, B.D. Miller and D.T. Soukup.

Theorem (R. Carroy, B.D. Miller, D.T. Soukup (2018)) OGD $_{\omega}^{\omega}(X)$ holds for all Σ_{1}^{1} subsets X of $^{\omega}\omega$.

They also obtain several dichotomies for the second level of the Borel hierarchy as special cases of $OGD_{\omega}^{\omega}(X)$.

Applications of $OGD_{\omega}^{\omega}(X)$

 $\mathrm{OGD}^\omega_\omega(X)$ was introduced by R. Carroy, B.D. Miller and D.T. Soukup.

Theorem (R. Carroy, B.D. Miller, D.T. Soukup (2018)) OGD $_{\omega}^{\omega}(X)$ holds for all Σ_{1}^{1} subsets X of $^{\omega}\omega$.

They also obtain several dichotomies for the second level of the Borel hierarchy as special cases of $OGD_{\omega}^{\omega}(X)$. For example:

Theorem (R. Carroy, B.D. Miller, D.T. Soukup (2018)) Let $X \subseteq {}^{\omega}\omega$. If $OGD_{\omega}^{\omega}(X)$ holds, then X satisfies the Hurewicz dichotomy (i.e., either X is contained in a K_{σ} subset of ${}^{\omega}\omega$ or there is a closed set $Y \subseteq X$ homeomorphic to ${}^{\omega}\omega$).

Theorem (Schlicht, Sz. (2019))

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, the following hold for all subsets $X \subseteq {}^{\kappa}\kappa$ which are definable from a κ -sequence of ordinals.

1. $OGD_{\kappa}^{D}(X)$, where $2 \leq D < \kappa$.

Theorem (Schlicht, Sz. (2019))

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, the following hold for all subsets $X \subseteq {}^{\kappa}\kappa$ which are definable from a κ -sequence of ordinals.

- 1. $OGD_{\kappa}^{D}(X)$, where $2 \leq D < \kappa$.
- 2. $OGD_{\kappa}^{\kappa}(X)$ restricted to

Theorem (Schlicht, Sz. (2019))

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, the following hold for all subsets $X \subseteq {}^{\kappa}\kappa$ which are definable from a κ -sequence of ordinals.

- 1. $OGD_{\kappa}^{D}(X)$, where $2 \leq D < \kappa$.
- 2. $OGD_{\kappa}^{\kappa}(X)$ restricted to the class of those κ -dimensional box-open dihypergraphs H on X

Theorem (Schlicht, Sz. (2019))

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, the following hold for all subsets $X \subseteq {}^{\kappa}\kappa$ which are definable from a κ -sequence of ordinals.

- 1. $OGD_{\kappa}^{D}(X)$, where $2 \leq D < \kappa$.
- OGD^κ_κ(X) restricted to the class of those κ-dimensional box-open dihypergraphs H on X such that H = H' ∩ ^κX for some Σ¹₁(κ) subset H' of ^κ(^κκ).

Theorem (Schlicht, Sz. (2019))

In $\operatorname{Col}(\kappa, <\lambda)$ -generic extensions, where $\lambda > \kappa$ is inaccessible, the following hold for all subsets $X \subseteq {}^{\kappa}\kappa$ which are definable from a κ -sequence of ordinals.

- 1. $OGD_{\kappa}^{D}(X)$, where $2 \leq D < \kappa$.
- OGD^κ_κ(X) restricted to the class of those κ-dimensional box-open dihypergraphs H on X such that H = H' ∩ ^κX for some Σ¹₁(κ) subset H' of ^κ(^κκ).

This theorem gives the exact consistency strength of these statements.

► Which applications follow already from the restricted version of OGD^ω_ω(X) in the previous theorem?

- ► Which applications follow already from the restricted version of OGD^ω_ω(X) in the previous theorem?
- Which applications of OGD^D_ω(X) can be generalized to the setting of κ-Baire spaces for κ > ω?

- ► Which applications follow already from the restricted version of OGD^ω_ω(X) in the previous theorem?
- Which applications of OGD^D_ω(X) can be generalized to the setting of κ-Baire spaces for κ > ω?
- Let OGA_{κ} say: $OGA_{\kappa}(X)$ holds for all $X \subseteq {}^{\kappa}\kappa$

- ► Which applications follow already from the restricted version of OGD^ω_ω(X) in the previous theorem?
- Which applications of OGD^D_ω(X) can be generalized to the setting of κ-Baire spaces for κ > ω?
- Let OGA_κ say: OGA_κ(X) holds for all X ⊆ ^κκ (i.e. if X ⊆ ^κκ and G is an open graph on X, then either G has a κ-coloring or G includes a complete subgraph of size κ⁺).

- ► Which applications follow already from the restricted version of OGD^ω_ω(X) in the previous theorem?
- Which applications of OGD^D_ω(X) can be generalized to the setting of κ-Baire spaces for κ > ω?
- ▶ Let OGA_{κ} say: $OGA_{\kappa}(X)$ holds for all $X \subseteq {}^{\kappa}\kappa$ (i.e. if $X \subseteq {}^{\kappa}\kappa$ and G is an open graph on X, then either G has a κ -coloring or G includes a complete subgraph of size κ^+).

Is OGA_{κ} consistent?

- ► Which applications follow already from the restricted version of OGD^ω_ω(X) in the previous theorem?
- Which applications of OGD^D_ω(X) can be generalized to the setting of κ-Baire spaces for κ > ω?
- Let OGA_κ say: OGA_κ(X) holds for all X ⊆ ^κκ (i.e. if X ⊆ ^κκ and G is an open graph on X, then either G has a κ-coloring or G includes a complete subgraph of size κ⁺).

Is OGA_{κ} consistent? If so, how does it influence the structure of the κ -Baire space?

Thank you!